超音波探傷試験Ⅲ2017 正誤表

2018年5月24日

頁	章	行	誤	正
9	2.3.4	左2行目	訓練 終 了の証明文書	訓練 <mark>修</mark> 了の証明文書
52	4.1.4	左 18 行目	sine 波よりも バースト波 が用いられることが多い。	sine 波よりもスパイクパルス波が用いられることが多い。
78	5.1	右2行目	波長 A の	波長 λ の
81	5.3.1	図 5.6		
82	5.3.1	(5.17)式	$K = P_0 \cdot \frac{\pi D^2}{8\lambda x} = P_0 \cdot \frac{A}{2\lambda}$	$K = P_0 \cdot \frac{\pi D^2}{8\lambda} = P_0 \cdot \frac{A}{2\lambda}$
		(5.17)式の下		(5.17)式の下に下記の文,式を挿入する。 ここで,A:振動子の面積 式(5.14),式(5.15)及び式(5.17)からきずエコーの受信音圧 $P_{\rm F}$ は次のように表される。 $\frac{P_F}{P_0} = \frac{A\gamma}{2\lambda x}$ (5.17')
	5.3.2	右下 13 行目	図 5.6	図 5.7
		右下8行目	$r/\sqrt{\lambda x} \le 0.4$	$0.8\sqrt{\lambda x} \ge 2r \ge 0.7\lambda$
		右下3行目	式(5.19)と式(5.20)を組み合わせると,	式(5.19)と式(5.17')を組み合わせると,
83	5.3.2	左1行目	$r/\sqrt{\lambda x} \ge 0.4$	$2r \ge 0.8\sqrt{\lambda x}$
		左 22 行目	$0.8/\sqrt{\lambda x} \ge 2a \ge 0.7\lambda, \ 2b \ge 3\sqrt{\lambda x}$	$0.8\sqrt{\lambda x} \ge 2a \ge 0.7\lambda, \ 2b \ge 3\sqrt{\lambda x}$
		左下10行目	(5.22)を式(5.17)と組み合わせると,	式(5.22)を式(5.17')と組み合わせると,
		左下7行目	$0.8/\sqrt{\lambda x} \ge 2a \ge 0.7\lambda, 0.8/\sqrt{\lambda x} \ge 2b \ge 0.7\lambda$	$0.8\sqrt{\lambda x} \ge 2a \ge 0.7\lambda, 0.8\sqrt{\lambda x} \ge 2b \ge 0.7\lambda$

83	5.3.2	右下7行目	式(5.22)を式(5.20)と組み合わせると,	式(5.22)を式(5.17')と組み合わせると,
84	5.3.2	式(5.28)	$\gamma \cong 66 + \frac{r^3}{\lambda^2 x}$	$\gamma \cong 66 \times \frac{r^3}{\lambda^2 x}$
		図 5.11	χ ρ_2 ρ_1	χ ρ_2 ρ_1
		右上 4~5 行目	式(5.30)を式(5.20)と組み合わせると,	式(5.30)を式(5.17')と組み合わせると,
		式(5.33)	$\gamma = 2\sqrt{\frac{\rho_1 \rho_2}{(\rho_1 + x)(\rho_2 + x)}} \times \sqrt{\frac{1622(10) + 622(10)}{(\rho_1 + x)(\rho_2 + x)}}$	$\gamma = 2\sqrt{\frac{\rho_1 \rho_2}{(\rho_1 + x)(\rho_2 + x)}} \times$
			$\sqrt{ S^2(a') + C^2(a') } \times S^2(b') + C^2(b') $	$\sqrt{\{S^{2}(a') + C^{2}(a')\} \times \{S^{2}(b') + C^{2}(b')\}}$
		式(5.34)	$a' = 2\sqrt{\frac{\rho_1 + x}{\lambda \rho_1 x}}, \ b' = 2\sqrt{\frac{\rho_2 + x}{\lambda \rho_2 x}}$	$a' = 2a \sqrt{\frac{\rho_1 + x}{\lambda \rho_1 x}}, \ b' = 2b \sqrt{\frac{\rho_2 + x}{\lambda \rho_2 x}}$
85	5.3.2	表 5.1	表内の適用条件	添付別紙のとおり。(P4)
		式(5.35)	$\gamma = 2 \sqrt{\frac{\rho_1 \rho_2}{(\rho_1 + x)(\rho_2 + x)}}$	$\gamma = \sqrt{\frac{\rho_1 \rho_2}{(\rho_1 + x)(\rho_2 + x)}}$
	5.3.3	式(5.39)	$K = P_0 \times \frac{\pi D^2}{8\lambda x} = P_0 \times \frac{A}{2\lambda}$	$K = P_0 \times \frac{\pi D^2}{8\lambda} = P_0 \times \frac{A}{2\lambda}$
86	5.3.3	左上5行目	式(5.40)を式(5.27)に代入して,	式(5.14), 式(5.37)及び式(5.39)から,
93	5.8.4	式(5.60)	T _F :きずエコーのビーム路程	<i>X</i> <i>F</i> :きずエコーのビーム路程
105	6.3.1	式(6.3)	$\frac{B_F}{B_G} = 1 - \frac{\pi d^2 t}{2x\lambda} \left\{ \frac{2}{2t-x} - \frac{\pi d^2}{8\lambda(t-x)} \right\}$	$\frac{B_F}{B_G} = 1 - \frac{\pi d^2 t}{2x^2 \lambda} \left\{ \frac{2}{2t - x} - \frac{\pi d^2}{8\lambda(t - x)} \right\}$

105	6.3.1	図 6.17		1.0
177	9.2.3	左1行目	圧延方向に進行する場合は X 走査, 圧延方向に直角に 進行する場合は Y 走査となる	圧延方向に進行する場合は¥ 走査,圧延方向に直角に進行する場合は X 走査 となる
177	9.2.3	左4行目	同じ探傷感度であれば, Y 走査の方がエコー高さは高 くなる	同じ探傷感度であれば,X 走査の方がエコー高さは高く なる
202	10.5	右7行目	・・・, また, 使用する探触子の振動子大きさなどの よって・・・	 ・・・,また,使用する探触子の振動子の大きさなどに よって・・・

表 5.1 各種形状のきずの反射率 (朱記部修正)

	表5.1 各種形状のきずの反射率	 Construction
きずの形状	適用条件	きずの反射率
円形 ① Îr	$2r \ge 0.7\lambda$	$2\sin\left(\frac{\pi r^2}{\lambda x}\right)$ (rad)
	$0.8/\sqrt{\lambda x} \ge 2r$	$2\pi r^2/\lambda x$
	$2r \ge 0.8/\sqrt{\lambda x}$	1
	$0.8/\sqrt{\lambda x} \ge 2a \ge 0.7\lambda, 2b \ge 3\sqrt{\lambda x}$	$2a\sqrt{2/(\lambda x)}$
方形 平面 <u>x</u> 2b	$8/\sqrt{\lambda x} \ge 2a \ge 0.7\lambda, 0.8/\sqrt{\lambda x} \ge 2b \ge 0.7\lambda$	$8ab/(\lambda x)$
	$2a \ge 3\sqrt{\lambda x}$, $2b \ge 3\sqrt{\lambda x}$	1
	$r \ge 0.1\lambda$	r/x ·
	$r \leq 0.1\lambda$	$66r^3/(\lambda^2 x)$
→ri←	$2r \ge 0.2\lambda$ $2b \ge 3\sqrt{\lambda x}$ (長い円柱)	$\sqrt{\frac{r}{r+x}}$
	$2r \ge 0.2\lambda$ $0.7\lambda \le 2b \le 0.8\sqrt{\lambda x}$ (短い円柱)	$2\sqrt{2} \frac{b\sqrt{r}}{\sqrt{(r+x)\lambda x}}$
	$\begin{vmatrix} a' = 2\sqrt{\frac{\rho_1 + x}{\lambda \rho_1 x}}, & b' = 2\sqrt{\frac{\rho_2 + x}{\lambda \rho_2 x}}\\ a' \ge 3, & b' \ge 3 \end{vmatrix}$	$\sqrt{\frac{\rho_1\rho_2}{(\rho_1+x)(\rho_2+x)}}$

きずの形状		適用条件	きずの反射率
円形 平面	X r	$2r \ge 0.7 \lambda$	$2\sin(\frac{\pi r^2}{\lambda x})(rad)$
		$0.8\sqrt{\lambda x} \ge 2r \ge 0.7\lambda$	$2\pi r^2/(\lambda x)$
		$2r \ge 0.8\sqrt{\lambda x}$	1
方形 平面	N 2a	$0.8\sqrt{\lambda x} \ge 2a \ge 0.7\lambda, 2b \ge 3\sqrt{\lambda x}$	$2a\sqrt{2/(\lambda x)}$
	- <u>x</u> -2b	$\begin{array}{l} 0.8\sqrt{\lambda x} \geq 2a \geq 0.7\lambda,\\ 0.8\sqrt{\lambda x} \geq 2b \geq 0.7\lambda \end{array}$	$8ab/(\lambda x)$
		$2a \ge 3\sqrt{\lambda x}, \qquad 2b \ge 3\sqrt{\lambda x}$	1
71).	r	$r \ge 0.1 \lambda$	r/x
TK.		$0.1 \lambda > r$	$66r^3/(\lambda^2 x)$
円柱		長い円柱 $2r \ge 0.2 \lambda$, $2b \ge 3\sqrt{\lambda x}$	$\sqrt{r/(r+x)}$
		短い円柱 $2r \ge 0.2 \lambda$, $0.8 \sqrt{\lambda x} \ge 2b \ge 0.7 \lambda$	$2b\sqrt{2r/((r+x)\lambda x)}$
曲面	χ ρ_2 ρ_2 ρ_1	$2a \ge 3\sqrt{\frac{\lambda\rho_1 x}{\rho_1 + x}}, \qquad 2b \ge 3\sqrt{\frac{\lambda\rho_2 x}{\rho_2 + x}}$	$\sqrt{\frac{\rho_1 \rho_2}{(\rho_1 + x)(\rho_2 + x)}}$

5.3 各種きずの反射率

各種形状のきずによるエコー高さを定量的に 取り扱うときによりどころとなる考え方に「きず の反射率」と「形状反射能率」の2つがある。どちら もきずで反射され振動子において受信された超音 波の音圧を表現するものであるが,基準の取り方 に違いがある。この章ではきずの反射率について 解説することにする。

5.3.1 きずの反射率の定義

(1) きずの反射率の定義

きずによる超音波の反射の程度を定量的に扱うために、図5.6に示すように、きずの位置に無限に大きくて超音波ビームに垂直な完全反射面が

図5.6 きずの反射率の定義

あると仮定して,その無限大平面からの反射波 (エコー)の音圧を*P*_∞に対するきずによる反射波 (エコー)の音圧*P*_Fの比(ただし,絶対値をとる)を きずの反射率γと定義している。すなわち次式で 表される。

$$\gamma = P_F / P_{\infty} \tag{5.14}$$

γ=1は,無限に大きい完全反射面と同等のエコー を生じることを意味する。

(2) きずの反射率ときずによるエコーの音圧と の関係

きずの反射率を適用できるのは、少なくとも $n \ge 1$ の遠距離音場に限定される。このような遠距 離音場では、音源は点音源とみなすことができ る。点音源から発射された超音波は、球面拡散し ながら伝搬していくから、その音圧は音源からの 距離に反比例して弱まる。したがって、無限に大 きい完全反射面からのエコー(反射波の音圧) P_{∞} は音源からの距離xに反比例する。すなわち、 $P_{\infty} = K/x$ (5.15)

となる。ここでKは比例定数である。

また無限大の完全反射面からの受信音圧 P_{∞} は式(5.8)で示したように,

$$P_{\infty} = P_0 \cdot \frac{\pi D^2}{8\lambda x} \tag{5.16}$$

式(5.15)と式(5.16)を比較すると,比例定数Kは 次のように表される。

$$K = P_0 \cdot \frac{\pi D^2}{8\lambda} = P_0 \cdot \frac{A}{2\lambda}$$
(5.17)

ここで,A:振動子の面積

式(5.14),式(5.15)及び式(5.17)からきずエコーの 受信音圧 P_Fは次のように表される。

$$\frac{P_F}{P_0} = \frac{A\gamma}{2\lambda x} \tag{5.17'}$$

5.3.2 各種きずの反射率2)-5)

(1) 円形平面きずにおけるきずの反射率

図5.6のF点に超音波の進行方向に垂直な円形平 面きずがあるとする。その円形平面きずの半径を rとすれば、以下のように円形きずの大きさと反 射率の関係は整理される。

 $2r \ge 0.7\lambda$ (きずが超音波波長より充分大きい),ただし、きずまでの距離は考慮しないとき

$$\gamma = 2\sin\left(\frac{\pi r^2}{\lambda x}\right) \tag{5.18}$$

この関数は、図5.7に示すように、円形平面きず の半径がある程度大きくなる($r/\sqrt{\lambda x} \approx 0.4$)と、 γ の値は1より大きくなる。それより半径が大きい 範囲では、超音波の干渉に起因して、 γ の値は2と 0の間を往復する。しかし式(5.18)は、 $x \gg \lambda$ の場合 に成立する式であるので、実際には0には到達せ ず、 γ の変動は次第に小さくなり、平均値 γ =1に次 第に近づいて無限大平面の反射率と一致する。な お、図5.7の横軸 $r/\sqrt{\lambda x} \ge 2$ の範囲の曲線は、この ことを定性的なイメージとして示したものであ り、定量的な意味はない。この点を考慮し、 2 $r \ge 0.7\lambda$ の場合で、距離xに応じて場合分けする

と、

0.8 $\sqrt{\lambda x}$ ≥ 2*r* ≥ 0.7 λ (きずが超音波波長より充分 大きく,かつきずまでの距離がある程度遠い場合)

式(5.18)は近似的に式(5.19)のようになり、 γ は円 形平面きずの面積 $S = \pi r^2$ に比例する。

 $\gamma = \frac{2\pi r^2}{\lambda x} \tag{5.19}$

式(5.19)と式(5.17')を組み合わせると,

$$\frac{\mathbf{P}_F}{P_0} = \frac{A\pi r^2}{\lambda^2 x^2} \tag{5.20}$$

となる。

 $2r \ge 0.8\sqrt{\lambda x}$ (きずが超音波波長より充分大き く,かつきずまでの距離も近い場合)の場合 $\gamma=1$ に次第に近づくことになる。

(2) 方形平面きずにおけるきずの反射率

図5.6のF点に,超音波の進行方向に垂直な方形 平面きずがあるとする。その方形平面きずの (幅)×(長さ)を2a×2bとすれば,2a≥07λ,2b≥ 0.7λのとき,きずの反射率は次式で与えられる。

$$\gamma = 2\sqrt{\{S^2(a') + C^2(a')\}\{S^2(b') + C^2(b')\}}$$
(5.21)

ここで,

 $a' = 2a/\sqrt{\lambda x}$, $b' = 2b/\sqrt{\lambda x}$ また, S(Z), C(Z)はフレネル積分であり, 幅(2a) の細長い帯状きずで,

$0.7\lambda \leq 2a \leq 0.8\sqrt{\lambda x},$

 $Zb \ge 4\sqrt{\lambda x}$ の場合には,

$$\sqrt{S^2(a') + C^2(a')} = a'$$

 $\sqrt{S^2(b') + C^2(b')}$ の値は0.707= $\sqrt{0.5}$ に次第に近づく。すなわち、式(5.21)を距離xに応じてさらに場合分けすると、

0.8√*λx* ≥ 2*a* ≥ 0.7*λ*, 2*b* ≥ 3√*λx* (きずが細長い
 形状で,かつきずまでの距離がある程度遠い場
 合)の場合

$$y = 2a\sqrt{\frac{2}{\lambda x}}$$
(5.22)

すなわち反射率γは長辺に比例する。さらに,式 (5.22)を式(5.17)と組み合わせると,

$$\frac{P_F}{P_0} = \frac{Aa\sqrt{2}}{(\lambda x)^{1.5}} \tag{5.23}$$

となる。

$0.8\sqrt{\lambda x} \ge 2a \ge 0.7\lambda, \quad 0.8\sqrt{\lambda x} \ge 2b \ge 0.7\lambda$

(きずが比較的正方形に近く,かつきずまでの距離がある程度遠い場合)の場合

$$\gamma \cong \frac{8ab}{\sqrt{\lambda x}} \tag{5.24}$$

すなわち,小円形平面きずの場合と同様に,小方 形平面きずの反射率はその面積に比例する。

 $2a \ge 3\sqrt{\lambda x}$, $2b \ge 3\sqrt{\lambda x}$ (きずが正方形に近く, かつきずまでの距離がある程度近い場合)の場合 $\gamma = 1$ に次第に近づいて無限大平面の反射率と一致 する。

(3) 球形きずにおけるきずの反射率

図5.6のF点に球形きずがあるとする。その球形 きずの半径をrとすれば、きずの反射率は次式で 与えられる。

 $\gamma \cong \frac{2r}{x} \cdot \left| \dot{Z} \right| \tag{5.25}$

ここで,Zはステンツェル(Stenzel)の反射係数 で,その絶対値|Z|は図5.8に示すとおりである。 ここで,きずの大きさに従い場合分けすると,

 $r \ge 0.1\lambda$ (きずが比較的大きい) の場合

図5.8でkr≧0.7に相当し, |Z|の値は0.5に次第に 近づくから, 式(5.25) は次のようになる。

 $\gamma \cong \frac{r}{x} \tag{5.26}$

この場合には反射率は波長λと関係がなくなり、きずの大きさに比例し、距離に反比例することを示している。式(5.26)を式(5.17')と組み合わせると、

$$\frac{P_F}{P_0} = \frac{Ar}{2\lambda x^2} \tag{5.27}$$

となる。また,

r ≤ 0.1λ(きずが比較的小さい)の場合 きずが小さく,r<0.1λの場合には,式(5.25)は式 (5.28)のようになる。

$$\gamma \cong 66 \cdot \frac{r^3}{\lambda^2 x} \tag{5.28}$$

すなわち,反射率はきずの径の3乗に比例し,波 長の2乗及び距離に反比例する。

図5.9 円柱面での反射

図5.10 円柱形きずにおけるきずの反射率

(4) 円柱形きずにおけるきずの反射率

図5.9に示すように,直径2r,長さ2bの円柱形き ずの軸に垂直に超音波が入射するときのきずの反 射率は、次式で与えられる。

$$\gamma \cong \sqrt{\frac{2r}{r+x}} \sqrt{S^2(b') + C^2(b')}$$
(5.29)

ここで $b' = 2b/\sqrt{\lambda x}$ である。ある程度の大き さのある円柱($2r \ge 0.2 \lambda$)について場合分けす ると

2b ≥ 3√λx(長い円柱)の場合, 式(5.29)は,式(5.30)のようになる。

 $\gamma \cong \sqrt{\frac{r}{r+x}} \tag{5.30}$

式(5.30)の計算結果は図5.10で示されており、反 射率γはきずが大きくなるに従って増加し、0dB に漸近することがわかる。式(5.30)を式(5.17')と 組み合わせると、受信エコーの音圧は式(5.31)と なる。

$$\frac{P_F}{P_0} = \frac{A\sqrt{r}}{2\lambda x \sqrt{r+x}} \tag{5.31}$$

0.7λ ≤ 2b ≤ 0.8√λx(短い円柱)の場合, 式(5.29)は,式(5.32)のようになる。

$$\gamma \cong 2\sqrt{2} \frac{b\sqrt{r}}{\sqrt{(r+x)\lambda x}} \tag{5.32}$$

すなわち,反射率は径と共に,長さ(b)に比例することになる。

(5) 曲面状きずにおけるきずの反射率

図5.11のような曲面状きずに垂直に超音波が入 射する場合のきずの反射率は,

2a≥0.7λ, 2b≥0.7λのとき(きずがある程度大き い場合)の場合,次式で与えられる。

$$\gamma = 2 \sqrt{\frac{\rho_1 \rho_2}{(\rho_1 + x)(\rho_2 + x)}} \times \sqrt{\{S^2(a') + C^2(a')\} \times \{S^2(b') + C^2(b')\}}$$
(5.22)

(5.33)

$$a' = 2a \sqrt{\frac{\rho_1 + x}{\lambda \rho_1 x}}, \quad b' = 2b \sqrt{\frac{\rho_2 + x}{\lambda \rho_2 x}}$$
(5.34)

ここで, a'とb'は下式となる。

a'≧3, b'≧3(面が大きく湾曲している) すなわ

ち
$$2a \ge 3\sqrt{\frac{\lambda\rho_1 x}{\rho_1 x}}, \ 2b \ge 3\sqrt{\frac{\lambda\rho_2 x}{\rho_2 + x}}$$
の場合,

式(5.33)のフレネル積分の項が0.5に近づくので、

$$\gamma = \sqrt{\frac{\rho_1 \rho_2}{(\rho_1 + x)(\rho_2 + x)}}$$
(5.35)

となり,面の大きさに関係なく,曲率と距離によってきずの反射率が決まる。

a'≦0.8, b'≦0.8の場合(面の湾曲が比較的ゆる やか)の場合には, 次のようになる。

$$\gamma \cong \frac{8ab}{\lambda x} = \frac{2S}{\lambda x} \tag{5.36}$$

図5.11 曲面上での反射

すなわち反射率は面の大きさに比例することになる。

これらの反射率の結果をまとめたものが表5.1で ある。

5.3.3 各種きずのエコー高さ

きずの反射率を適用できるのは、少なくとも n≥1の遠距離音場に限定される。このような遠距 離音場では、音源は点音源と見なすことができ る。点音源から発射された超音波は、球面拡散し ながら伝搬していくから、その音圧は音源からの 距離xに反比例して弱まる。したがって無限に大 きい完全反射面からのエコー(反射波の音圧P₀) は、音源からの距離xに反比例する。すなわち、 $P_{\infty} = K/x$ (5.37) となる。ここで, *K*は比例定数である。

ところで、先に導いたように、無限大の完全 受信音圧 P_F は次のように表される。 反射面からの受信音圧 P_{\circ} は式(5.38)で表される。 $P_F = A = A = \gamma$

$$P_{\infty} = P_0 \cdot \frac{\pi D^2}{8\lambda x} \tag{5.38}$$

式(5.37)と式(5.38)とを比較すると,比例定数*K*は 次のように表される。

$$K = P_0 \cdot \frac{\pi D^2}{8\lambda} = P_0 \cdot \frac{A}{2\lambda}$$
(5.39)

ここで,A:振動子の面積

底面エコーの音圧 $P_{\rm B}$ は,式(5.38)の P_{∞} を $P_{\rm B}$ と置いて得られる。

$$\frac{P_B}{P_0} = \frac{A}{2\lambda x} \tag{5.40}$$

表 5.1 各種形状のきずの反射率

式(5.14),式(5.37)及び式(5.39)から,きずエコーの 受信音圧P_Fは次のように表される。

$$\frac{P_F}{P_0} = \frac{A}{2\lambda x} \cdot \gamma = \frac{A}{2\lambda} \cdot \frac{\gamma}{x}$$
(5.41)

きずエコー高さは、きずエコーの音圧に比例 するから、振動子の寸法及び周波数が同じ場合に は、遠距離音場におけるきずエコー高さは、式 (5.41)によって、きずの反射率γに比例し、更に、 きずまでの距離xに反比例することになる。また 標準穴による距離振幅特性曲線を用いてきずエコ -高さを評価する場合、標準穴ときずのエコー高 さを同じ距離で比較することになるので、きずの 反射率の違いだけを考えればよいことになる。

きずの形状。		適用条件↓	きずの反射率。	+
円形↓ 平面↓	r	$2r \geq 0.7 \lambda$ $_{\circ}$	$2\sin(\frac{\pi r^2}{\lambda x})(rad)$	•
	x	$0.8\sqrt{\lambda x} \ge 2r \ge 0.7\lambda$.	$2\pi r^2/(\lambda x)$	•
	сь С	$2\mathbf{r} \geq 0.8\sqrt{\lambda x}$,	1 🕫	
	▶ 2a	$0.8\sqrt{\lambda x} \geq 2a \geq 0.7\lambda, 2b \geq 3\sqrt{\lambda x}$	$2a\sqrt{2/(\lambda x)}$	•
方形↓ 平面↓	- <u>x</u> - <u>1</u> 2b	$0.8\sqrt{\lambda x} \ge 2a \ge 0.7\lambda,*$ $0.8\sqrt{\lambda x} \ge 2b \ge 0.7\lambda_*$	8ab/(λx)∻	•
	↓ <i>↓</i>	$2a \ge 3\sqrt{\lambda x}, \qquad 2b \ge 3\sqrt{\lambda x}$	1 🕫	•
I .t.		$r \ge 0.1 \lambda$ v	r/x ~	
T¥ 9		$0.1 \lambda > r \phi$	$66r^3/(\lambda^2 x)$	•
ITT#+		長い円柱。 $2\mathbf{r} \ge 0.2 \lambda$, $2\mathbf{b} \ge 3\sqrt{\lambda x}$ 。	$\sqrt{r/(r+x)}$.	+
┍┶┓╅╧┷╺┙		短い円柱。 $2\mathbf{r} \ge 0.2 \lambda$, $0.8\sqrt{\lambda x} \ge 2b \ge 0.7\lambda$ 。	$2b\sqrt{2r/((r+x)\lambda x)}$	*
曲面。	χ ρ_{2} ρ_{1} ρ_{1} ρ_{2}	$2a \ge 3\sqrt{\frac{\lambda\rho_1 x}{\rho_1 + x}}, \qquad 2b \ge 3\sqrt{\frac{\lambda\rho_2 x}{\rho_2 + x}},$	$\sqrt{\frac{\rho_1 \rho_2}{(\rho_1 + x)(\rho_2 + x)}},$	*

1